Complementi sulla risposta nel
dominio del tempo dei sistemi
di primo e secondo ordine



Poles and Zeros of a First-Order System: An Example

Given the transfer function G(s) in Figure 4.1(a), a pole exists at s = —5 and a
zero exists at —2. These values are plotted on the complex s-plane in Figure 4.1()
using an X for the pole and a O for the zero. To show the properties of the poles
and zeros, let us find the unit step response of the system. Multiplying the transfer
function of Figure 4.1(a) by a step function yields

_(+2) _A_ B _2/5 3/5

C(s)-s(s+5) S T iES & Taws (.1
where
_ ) g
- (S+5):_,0 5
2 - (s+2) =§
E lowak 9
Thus,
clt) = z + 2e""' (4.2)

S B



Figure 4.1

. a. Jystem showing

input and output;

. pole-zero plot

of the system;

¢. evolution of a
system response,
Follow blue arrows

to see the evoletion
of the response
companent geperated
by the pole or zerp,

———— T ———— ——

L 5
Forced response  Natural respo
(c)

—,
nse

i
s-plane
I G(s) P
Ris)== C
s+ K
{2) (5)
Input pole System zero System polc_
-
s+5
jo



From the development summarized in Figure 4.1(c), we draw the following con,
clusions:

1. A pole of the inpul function genecates the form of the forced response (i.e., the
pole at the origin generated a step function at the output).

2. A pole of the transfer function generates the form of the natural response {i.e.,
the pole at —5 generated e™*").

3. A poleon the real axis generates an exponential response of the form e ™%, where
—a 1s the pole location on the real axis. Thus, the farther to the ieft a pole is on
the negative real axis, the faster the exponential transient response will decay
to zero (i.e., again the pole at —5 generated e~; see Figure 4.2 for the general

case).

4, The zeros and poles generate the amplitudes for both the forced and natural
responses (this can be seen from the calculation of A and B in Eq. {(4.1)).

Let us now look at an example that demonstrates the technique of using poles
1o obtain the form of the system response. We will learn to write the form of the
response by inspection, Each pole of the system transfer function that is on the real
axis generales an exponential response that is a component of the natural response.
The input pole generates the forced response.
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Evaluating response using poles

Problem Given the system of Figure 4.3, write the output, ¢(t), in general terms.
Specify the forced and naturai panis of the sojution.

Figure 4.3 Ris)= % (s+3) (£}
System for e (s+2)s+4{s+5)
Example 4.1 i

" Solution By inspection, each system pole generates an exponential as part of the
natural response, The input's pole generates the forced response. Thus,
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Taking the inverse Laplace transform, we get
c)=m K| +Kie ¥ +Kze ¥+ Ko™ (4.4)
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4,3 First-Order Systems

A first-order system without zeros can be described by the transfer function shown
in Figure 4.4(q). If the input is a unit step, where R(s) = i/s, the Laplace transform
of the step response is C(s), where :

i

C(s) = R(5GEK) = G+ a (4.5)
Taking the inverse ransform, the step response is given by
)=ty +cu(t) = 1~ &7 {4.6)

where the imput pole at the origin generated the forced response ¢/{t) = 1, and
the system pole at ~a, as shown in Figure 4.4(5), generated the natural response
ca{t) = —e™¥. Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter g, the only parameter needed to
describe the transient response. When ¢ = 1/a,

E_m’;r_”'a = E-I = (.37 (4.7}
or L
cO)myse = 1—€%|,0yy, = 1-0.37 = 0,63 {4.8)

We now use Egs. (4.6), (4.7), and (4.8) to define three transient response per-
formance specifications.
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Time Constant

We call 1/ a the time constant of the response. From Eq. (4.7), the lime constant can
be described as the time for e™* to decay to 37% of its initial vatue. Alternately,
from Eq. {4.8), the time constant is the time it takes for the step response to rise te
63% of its final value {see Figure 4.5).

The reciprocal of the time constant has the units {}/seconds), or frequency.
Thus, we can call the parameter a the exponential frequency. Since the derivative
of e is —~a whent = 0, ais the initial rate of change of the exponential at ¢ = 0.
Thus, the time constant can be considered a transient response specification for a

first-order system, since it is related to the speed at which the system responds to a
step 1nput.

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)).
Since the pole of the transfer function is at -, we can say the pole is jocated at the
reciprocal of the time constant, and the farther the pole from the imaginary axis,
the faster the transient response.

Let us look at other transient response specifications such as rise time, T, and
settling time, Ts, as shown in Figure 4.5,



Rise Time, T,

Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final
value. Rise time is found by solving Eq. (4.6) for the difference intime atc(f) = 0.9
and ¢{f} = 0.1. Hence,

r o 23 _oa 22 G

Settling Time, T,

Setrling time is defined as the time for the response to reach, and stay within, 2%
of its final value.? Letting c(z) = 0.98 in Eq. (4.6) and solving for time, ¢, we find
the settting time to be

I, = (4'10)
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4.4 Second-Order Systems: introduction

Compared to the simplicity of a ficst-order system, a second-order system exhibits
a wide range of responses that must be analyzed and described. Whereas varying a
first-order system'’s parameter simply changes the speed of the response, changes
in the parameters of a second-order system can charge the form of the response. For
example, a second-order system can display characteristics much like a first-order
system or, depending on component values, display damped or pure oscillations for
its transient response.

To become familiar with the wide range of responses before formalizing our
discussion in the next section, we take a look at numericai examples of the second-
order system responses shown in Figure 4.7, All examples are derived from Figure
4.7(z), the generat case, which has twe finite poles and no zeros. The term in the
numerator is simply a scale or input muitiplying factor that can take on any vaiue
without affecting the form of the derived results. By assigning appropriate values
to parameters a and &, we can show all possible second-order transient respenses.
The unit step response then can be found using C(s) = R{5)G(s), where R(s) =
1/s, followed by a partial-fraction expansion and the inverse Laplace transform.
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Overdamped Response, Figure 4.7{b)

For this response,

9 9
s(s2+95+9)  s(s+ 7.854)(s + 1.146)

This function has a pole at the origin that comes from the unit step input and
two real poles that come from the system. The input pole at the origin gen-
erates the constant forced response; each of the two system poles on the real
axis generates an exponential natural response whose exponential frequency is
equal to the pole location. Hence, the output initially could have been written
as (i) = K + Kpe 8% 4 Kze~ 1% This response, shown in Figure 4.7(d), is

called overdamped.® We see that the poles tell us the form of the response without
the tedious calculation of the inverse Laplace transform.
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Underdamped Response Figure 4.7|(c)

For this response,

9

5 st + 25+ 9)

(4.13)

This function has a pole at the origin that comes from the unit step input and two com-
plex poles that come from the system. We now compare the response of the second-
order system to the poles that generated it. First we will compare the pole location
to the time function, and then we will compare the pole location to the plot. From
Figure 4.7(c), the poles that generate the natural response are at s = —1 % Jé
Comparing these values to c(f) in the same figure, we see that the real part of the
pole matches the exponential decay frequency of the sinusoid’s amplitude, while
the imaginary part of the pole matches the frequency of the sinusoidal osciilation.

Let us now compare the pole location to the plot. Figure 4.8 shows a general,
damped sinusoidal response for a second-order system. The transient response con-
sists of an exponentially decaying amplitude generated by the real part of the sys-
tem pole times a sinusoidal waveform generated by the imaginary part of the system
pole. The time constant of the expenential decay is equal to the reciprocal of the
real part of the system pole. The value of the imaginary part is the actual frequency
of the sinusoid, as depicted in Figure 4.8. This sinusoidal frequency is given the
name damped frequency of oscillation, wy. Finally, the steady-state response (unit
step) was generated by the input pole located at the origin. We cail the type of
response shown in Figure 4.8 an underdamped response, one which approaches
a steady-state value via a transient response that is a damped oscillation.
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Undamped Response, Figure 4.7{d)
For this response,

(4.14)

This function has a pole at the origin that comes from the unit step iaput and
two imaginary poles that come from the system. The input pole at the origin gen-
erates the constant forced response, and the two system poles on the imaginary
axis at *j3 generate a sinusoidal natural response whose frequency is equal 10
the location of the imaginary poles. Hence, the cutput can be estimated as ¢(1} =
K; + Kscos(3t — ¢). This type of response, shown in Figure 4.7(d), is called
nndamped. Note that the absence of a real part in the peole pair corresponds to an
exponential that does not decay. Mathematicatly the exponential s eV =1,
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1.

Z.

Qverdamped responses:
Poles: Two real at —ary, — 0

Natural response: Two exponent:als with time constants equal to the reciprocal
of the pole locations, ot

c() = Kye™ " + Kze™ ™

Underdamped responses:
Poies: Two complex at —ogy * joy

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equai to the reciprocal of the pole’s real part. The radian frequency
of the sinusoid, the damped frequency of oscillation, is equal to the imaginary
part of the poles, or

e(r) = Ae” "¢ cos(wgt — @)

Undamped responses:

Poles: Two imaginary at *jw, |

Natura) response: Undamped sinuscid with radian frequency equai to the imag-
inary part of the poles, or

c(t) = Acos{wt — @)



4.5 The General Second-Order System

Now that we have become familiar with second-order systems and their responses,
we generalize the discussion and establish quantitative specifications defined n
such a way that the response of a second-order system can be described to a designer
without the need for sketching the response. In this section we define two physically
meaningful specifications for second-order systems. These quantities can be used
to describe the characteristics of the second-order transient response just as time
constants describe the first-order system response. The two quantities are called
natural frequency and damping ratio. Let us formally define them.

Natural Frequency, «,

The natural frequency of a second-order system is the frequency of oscillation of
the system without damping. For example, the frequency of oscillation of a series
RLC circuit with the resistance shorted would be the natural frequency.



Damping Ratio, {

Before we state our next definition, some explanation is in order. We have already
seen that a second-order system’s underdamped step response is characterized by
damgped oscillations, Our next definition is derived from the need to quantitatively
describe this damped oscillation regardless of the time scale. Thus, a system whose
- transient response goes through three cycles in a millisecond before reaching the
steady state would have the same measure as a system that went through three
cycles in a millennium before reaching the steady state. For example, the under-
damped curve in Figure 4,10 has an associated measure that defines its shape. This
measure remains the same even if we change the time base from seconds to mi-
croseconds or to millenna.

A viable definition for this quantity is one that compares the exponential decay
frequency of the envelope to the natural frequency. This ratio is constant regardless
of the time scale of the response. Also, the reciprocal, which is proportional to
the ratio of the natural period to the exponential time constant, remains the same
regardless of the time base.

We define the damping ratio, {, to be

Pom Exponentia) decay frequency 1  Natural period (seconds) |
Natural frequency (rad/second) 27 Exponential time constant




Let us now revise our description of the second-order system to reflect the
new definitions. The general second-order system shown in Figure 4.7(a) can be
transformed to show the quantities { and w,. Consides the general system

b
2 +as+b

G(s) = (4.16)

Without damping, the poles would be on the jw axis, and the response would be an
undamped sinusoid. For the poles 10 be purely imaginary, 2 = 0. Hence,

b

Glay = st 4+ b

@.17)

By definiticn, the natural frequency, wy, is the frequency of oscillation of this sys-
tem. Since the poles of this system are on the jw axis al X Jb,

wy = Vb (4.18)

Hence,

b = mhl ' (4.19)



Now what is the term a in Eqg. (4.16)? Assuming an underdamped system, the
complex poles have a real part, o, equal to —a/2. The magnitude of this value is
then the exponential decay frequency described in Section 4.4. Hence,

Exponential decay frequency  jo] _ a/2

R~ frequency (rad/second) @, s e
from which
a = 2w, (4.21)
Our general second-order transfer function finally looks like this:
G(s) = 0 (4.22)

52 + 2Lwys + wt
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4.6 Underdamped Second-Order Systems

The underdamped second-crder system, a common model for physical problems,
displays unique behavior that must be itemized; a detailed description of the un-
derdamped response is necessary for both analysis and design. Our first objective
is 1o define transient specifications associated with underdamped responses. Next,
we relate these specifications to the pole location, drawing an association between
pole location and the form of the underdamped second-order response. Finally, we
tie the pole location to system parameters, thus closing the loop: desired response
generates required system components.

Let us begin by finding the step response for the general second-order system
of Eq. (4.22). The transform of the response, C(s), is the transform of the input
times the wansfer function, or

w,,2 s K Kis + Ky
5(s% + 2Lwus + @,y?) S 52 20w.5 + w2

where it is assumed that { < 1 (i.e., the underdamped case). Expanding by partial
fractions, using the metheds described in Section 2.2, Case 3, yields

(4.26)

C(s) =

(5 + Lon) + T‘?ﬁwﬂ/l =T

(s + fwa)? + @,2(1 = {?%) (4.27)
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Taking the inverse Laplace transform, which is left as an exercise for the student,
produces

) =1~ e““""(cos Wy 1 -+ ——\/l_{—:_z;sin Wy J1 — {3:)

i e \/l_l:_zie“""’cos(w,, JT= 1%~ ¢) (4.28)
where ¢ = tan~*({/ /1 = £2).

A plot of this response appears in Figure 4,13 for various values of £, plotted
along a hme axis normalized to the natural frequency. We now see the relationship
between the value of £ and the type of response cbtained: The lower the value of ¢,
the more oscillatory the response. The natural frequency is a time-axis scale factor
and does not affect the nature of the response other than to scale it in me.
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Figure 4.14 (1)
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L. Peak time, T,: The time required to reach the first, or maximum, peak.

2. Percent overshoot, %0S: The amount that the waveform overshoots the steady-
state, or final, value at the peak time, expressed as a percentage of the steady-
state vaiue.

3. Senling time, T;: The time required for the transient’s damped oscillations to
reach and stay within 2% of the steady-state value.

4, Rise time, T;: The time required for the waveform to go from 0.1 of the final
value to 0.9 of the final value.



Notice that the definitions for setiling time and rise time are basically the same as
the definitions for the first-order response. At definitions are alse valid for systems
of order higher than 2, although analytical expressions for these parameters cannol
be found unless the response of the higher-order system can be approximated as a
second-order systeim.

For a second-order system, step response:
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Evaluation of T,

~~In (0.02 Ji-_;z)

{wy

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as { varies
from O to 0.9. Let us agree on an approximation for the settling time that will be
used for all values of £; let it be

T, 4.41)

4
Ji'_gwn

Evaluation of T,

A precise analytical relationship between rise time and damping ratio, 7, cannot be
found. However, using a computer and Eq. (4.28), the rise time can be found. We
first designate w,? as the normalized time variable and select a value for £. Using
the computer, we solve for the values of w,z that yield ¢(t) = 0.9 and c(9) = C.1.
Subtracting the two values of w,t yields the normalized rise time, w,T,, for that
value of Z. Continuing in like fashion with other values of J, we obtain the results
plotted in Figure 4.16



Figure 4.16
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4.7 System Response with Additiona! Poles

In the last section we analyzed systems with one or two poles. It must be empha-
sized that the formulae describing percent overshoot, settling time, and peak time
were derived only for a system with two complex poles and no zeros. If a system
such as that shown in Figure 4,22 has more than two poles or has zeros, we cannot
use the formulae to calculate the performance specifications that we derived. How-
ever, under certain cenditions, a system with more than two poies or with zeros
can be approximated as a second-order system that has just two complex dominant
potes. Once we justify this approximation, the formuiae for percent overshoot, set-
thng time, and peak time can be applied to these higher-order systems using the
location of the dominant poles. In this section we investigate the effect of an addi-
tional pole on the second-order response.



Problem Find the step response of each of the transfer functions shown in Egs.
(4.62) through (4.64) and compare them.

34.542
= 4.62
)= e v 24543 \A)
S 24542
e 4-63
T2(s) (s + 10){s? + 45 + 24.542) 03]
626
T3(s) = 73.5 (4.64)

(s + '3)(52 + 45 + 24.542)

Solution The step response, C;(s), for the transfer function, Ti{s), can de found by
multiplying the transfer function by 1/s, a step input, and using partial-fraction
expansion followed by the inverse Laplace transform to find the response, ¢(4).
With the details left as an exercise for the student, the results are

c(y = 1~ 1.09¢ % cos(4.5321 ~ 23.8°) (4.65)
ca(d) = 1 = 0.29¢'% — 1.189¢ ™ cos (4.532¢ — 53.34°%) (4.66)
e3() = 1 — 1.14e™¥ + 0,707 % cos 4.5321 + 78.63°) (4.67)



The three responses are plotied in Figure 4.24. Notice that ¢3(f), with its third pole
at — 10 and farthest from the dominant poles, is the better approximation of ¢{1),
the pure second-order system response; ¢3(f}, with a third pole ciose to the dominant
poles, yields the most error. 3
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